Co **-0rdinatively Unsaturated Acetylene Complexes of Molybdenum and Tungsten; the Influence of a Second Metal on the Cyclisation of Co-ordinated Acetylenes. X-Ray Crystal Structure of**

$$
[W(\eta^{5}-C_{5}H_{5})\{C(GF_{3})=C(GF_{3})C(GF_{3})=C(GF_{3})\}(CO)_{2}Co(CO)_{2}]
$$

By **JACK L. DAVIDSON***

(Department of Chemistry, lieriot- Watt University, Riccarton, Gurrie, Edinburgh EH14 **4AS)**

and **LJUBICA MANOJLOVIC-MUIR, KENNETH** W. **MUIR,*** and **ALISON** N. **KEITH**

(Department of Chemistry, University of Glasgow, Glasgow G12 8QQ)

Summary Bis (hexafluorobut-2-yne) complexes $[M(n^5-C₅H₅)$ - $Cl(CF_3C=CCF_3)_2$ (M = Mo,W) react with $[Co_2(CO)_8]$ to give acetylene-bridged derivatives $[M(\eta^5-C_5H_5)CO(\mu CF₃CECCF₃_{2}Co(CO)₂$ which react further to give the metallacyclopentadiene complexes

 $\frac{1}{2}$ **I** $\frac{1}{2}$ **I** $\frac{1}{2}$ $\frac{$ which, for $M=$ W, has been structurally characterised by X-ray diffraction methods.

In a recent communication¹ one of us reported the thermal conversion of bis-acetylene complexes into isomeric cyclobutadiene derivatives, reactions which, being formally disallowed by orbital symmetry considerations,² probably proceed *via* stepwise mechanisms involving metallacyclopentadiene intermediates. We now provide evidence to support such a proposal by reporting reactions involving the transformation of two co-ordinated acetylenes into a metallacyclopentadiene unit.

The reaction of $[M(\eta^5-C_sH_s)Cl(CF_sC=CCF_s)_2]$ (M=Mo, W) (1) with $[Co_2(CO)_8]$ in diethyl ether at ambient temperature in a sealed tube gives crystalline complexes assigned structure $(2; L=CO)$ on the basis of elemental analysis and spectroscopic data: *e.g.* M=W, i.r. $\nu(CO)(CCl_4)$ 2099wm, 2063vs, and 2035vs cm⁻¹; ν (C=C) 1586 cm⁻¹; ¹H n.m.r. $(CDCl_3)$ δ 5.88 (s, η^5 -C₅H₅); ¹⁹F n.m.r. (CDCl₃) δ -48.68 (s, 6F) and -49.56 (s, 6F) p.p.m.; mass spectrum, $M+714$ and ions $[M - CO]^+$, $[M - 2CO]^+$, and $[M - 3CO]^+$. The $\nu(C=C)$ mode at 1586 cm⁻¹ can be compared with that of $[C_{\mathcal{O}_2}(CO)_6(\mu-CF_3C\equiv CCF_3)]$ (1600 cm⁻¹)³ while the lack of discernible F-F coupling in the 19F n.m.r. signals confirms that the acetylenes have not undergone cyclisation. Recently we⁴ and others^{5,6} have pointed out that acetylenes can formally donate more than two electrons to a metal and thus stabilise co-ordinatively unsaturated metal complexes such as **(1).** The fact that co-ordination of an extra two-electron donor (CO) is required for the group 6 metal to attain an **18** electron configuration in **(21,** where the acetylenes can act only as two-electron donors to each metal, strongly suggests that both sets of acetylenic π -orbitals are indeed involved in bonding with the metal in species such as **(1).**

With longer reaction times the initially formed **(2)** reacts further at **30** "C to yield dark red crystals of **(3).** X-Ray diffraction studies,[†] which reveal the structure illustrated in the Figure, confirm that acetylene cyclisation has occurred to give a metallacyclopentadiene, ostensibly as a result of CO co-ordination to the group 6 metal. The structure of (3; M=W) consists of $(\eta^5-\tilde{C}_5H_5)W(CO)_2$ and $Co(CO)₂$ units linked by a W–Co bond of length $2.664(1)$ Å and a butadiene ligand derived from two $CF₃C=CCF₃$ molecules such that each metal attains an 18 electron configuration. **A** nearly planar WC, ring is formed by σ -W-C bonds [2.12(1) and 2.16(1) Å] to the terminal carbon atoms of the butadiene. The cobalt atom is roughly equidistant from the four butadiene carbon atoms [Co-C $2.03(1)$ - $2.12(1)$ Å] and substantial cobalt-butadiene back donation is suggested by the similarity of the central $[1.42(1)$ Å] and terminal $[1.43(1)]$ and $[1.44(1)$ Å] butadiene C-C bond lengths. The tungsten co-ordination is most easily described in terms of an $(\eta^5-C_5H_5)WC_4$ piano-stool with a cobalt atom added *trans* to the $(\eta^5$ -C₅H₅) ring. Interestingly, metalla-ring formation does not occur when $(2; L=CO)$ reacts with PEt_a; instead CO substitution occurs

 \uparrow *Crystal data:* crystals of (3; M = W) are monoclinic, space group C2/c with $a = 27.898(3)$, $b = 9.338(1)$, $c = 15.948(2)$ Å, p = 107.87(1)°, with 8 C₁H₂C₄V and monochine, space group C_{2/C} with a section of the secondinates for this w **Chemical Laboratory, Lensfield Rd., Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for** this **communication.**

at $60 °C$ in hexane to give $(2; L=PEt_3)$ which provides a further' illustration of the ability of co-ordinated acetylenes to promote facile CO substitution even when the sole remaining carbonyl attached to the metal is involved.

Previously we have observed that co-ordination of CO to the iodo analogue of (1), $[Mo(\eta^5-C_5H_5)](CF_3C\equiv CCF_3)_2$, results in complete cyclisation of the alkynes to give a cyclobutadiene derivative $[Mo(\eta^5-C_5H_5)I(CO)\{\eta^4-C_4(CF_3)_4\}]$ possibly *via* a metallacyclopentadiene intermediate. The cyclisation $(2) \rightarrow (3)$ clearly supports such a proposal, the second metal (Co) effectively trapping such a species before full cyclisation to a cyclobutadiene can occur. In this context we note that complexes **(2)** are formally analogous to bis- μ -acetylene derivatives which in theory are capable of undergoing transformation to cyclobutadiene complexes in **a** concerted manner.2 The significance of the reaction $(1) \rightarrow (2) \rightarrow (3)$ reported herein is that stepwise routes *via* metallocycles may provide alternative lower-energy pathways. Finally we note that bis-acetylene complexes such as **(1)** may provide new routes to polynuclear metal clusters stabilised by bridging acetylenes, a possibility already tentatively established in platinum chemistry.*

(Received, 8th May **1980;** *Corn.* **491.)**

FIGURE. A view of $(3; M = W)$ showing 50% probability ellipsoids. Hydrogen atoms and the Co-C π -bonds are omitted for clarity. Fluorine atoms are not labelled.

- **J. L.** Davidson, *J. Chem.* **SOC.,** *Chem. Commun,,* **1980, 113.**
- 2F. D. Mango, *Coord. Chem. Rev.,* **1975, 15, 109.**
- J. **L.** Boston, D. W. **A.** Sharp, and G. Wilkinson, *J. Chem. SOG.,* **1962, 3488.**
- P. S. Braterman, J. L. Davidson, and D. W. **A.** Sharp, *J. Chem. SOC., Dalton Trans.,* **1976, 241.**
- ⁵ L. Ricard, R. Weiss, W. E. Newton, G. J-J. Chen, and J. W. McDonald, *J. Am. Chem. Soc.*, 1978, 100, 1318. ⁶ F. A. Cotton and W. T. Hall, *J. Am. Chem. Soc.*, 1979, 101, 5095
-
-
- J. **L.** Davidson, *J. Chem. SOL, Chem. Commun.,* **1979, 597** * N. M. Boag, M. Green, J. **A. K.** Howard, J. L. Spencer, R. F. D. Stansfield, F. G. **A.** Stone, M. D. 0. Thomas, J. Vincente, and P. Woodward, *J. Chem. SOG., Chem. Commun.,* **1977, 930.**